Computer Graphics

4 - Affine Space / Frame / Matrix

Yoonsang Lee Hanyang University

Spring 2023

Outline

• Affine Space - Point vs. Vector

• Coordinate System & Reference Frame

• Affine Transformation Matrix

• Interpretation of Composite Transformations

Clarification for Reflection

- Some people categorize reflection as a rigid transformation or a similarity transformation.
- However, this lecture does not categorize reflection as a rigid or similarity transformation.

Affine Space - Point vs. Vector

Affine Space - Point vs. Vector

- Conceptually, *points* and *vectors* are quite different.
- Homogeneous coordinates can be used to express this difference.
- We will see <u>affine space</u> and the <u>difference between points and</u> <u>vectors</u>, and their relationship with the <u>homogeneous coordinates</u>.
- This concept has been called *coordinate invariant* or *coordinate*-*free* geometric programming.
 - Many of the following slides for this part are from the slides of Prof. Jehee Lee (SNU): http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html

Points

• What is the "sum" of these two "points" ?

If you assume coordinates, ...

$$p = (x_1, y_1)$$

 $q = (x_2, y_2)$

- The sum is (x₁+x₂, y₁+y₂)
 - Is it correct ?
 - Is it geometrically meaningful ?

If you assume coordinates, ...

- Vector sum
 - (x₁, y₁) and (x₂, y₂) are considered as vectors from the origin to p and q, respectively.

If you select a different origin, ...

If you choose a different coordinate frame, you will get a different result

Points and Vectors

- A *point* is a position specified with coordinate values.
- A vector is specified as the difference between two points.
- If an origin is specified, then a point can be represented by a vector from the origin.
- But, a point is still not a vector in *coordinate-free* concepts.

Points & Vectors are Different!

- Mathematically (and physically),
- A *point* is a **location in space**.
- A vector is a displacement in space.

- An analogy with time:
- A *datetime* is a **location in time**.
- A *duration* is a **displacement in time**.

Vector and Affine Spaces

Vector space

- Includes vectors and related operations
- No points

Affine space

- Superset of vector space
- Includes vectors, points, and related operations

Vector spaces

- A vector space consists of
 - Set of vectors, together with
 - Two operations: addition of vectors and multiplication of vectors by scalar numbers
- A *linear combination* of vectors is also a vector

 $\mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_N \in V \implies c_0 \mathbf{u}_0 + c_1 \mathbf{u}_1 + \cdots + c_N \mathbf{u}_N \in V$

Affine Spaces

- An *affine space* consists of
 - Set of points, an associated vector space, and
 - Two operations: the difference between two points and the addition of a vector to a point

Coordinate-Free Geometric Operations

- Addition
- Subtraction
- Scalar multiplication

Addition

u, v, w : vectors p, q : points

Subtraction

Scalar Multiplication

scalar • vector = vector

- 1 point = point
- $0 \cdot point = vector$
- $c \cdot point = (undefined)$ if $(c \neq 0, 1)$

Affine Frame

- A *frame* is defined as a set of vectors {v_i | i=1, ..., N} and a point o
 - Set of vectors {v_i} are bases of the associate vector space
 - o is an origin of the frame
 - -N is the dimension of the affine space
 - Any point **p** can be written as

$$\mathbf{p} = \mathbf{0} + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$

Any vector v can be written as

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$

Summary

• In an affine space,

point + point = undefined point - point = vector point \pm vector = point vector \pm vector = vector scalar • vector = vector scalar • point = point = vector = undefined

iff scalar = 1 iff scalar = 0 otherwise

Points & Vectors in Homogeneous Coordinates

- In homogeneous coordinates,
- A 3D **point** is represented: (x, y, z, **1**)
- A 3D vector is represented: (x, y, z, 0)

→ This representation gives a completely consistent model with the concept of points and vectors in coordinate-free geometric programming!

Points & Vectors in Homogeneous Coordinates

 $(x_1, y_1, z_1, 1) + (x_2, y_2, z_2, 1) = (x_1+x_2, y_1+y_2, z_1+z_2, 2)$ point point undefined $(x_1, y_1, z_1, 1) - (x_2, y_2, z_2, 1) = (x_1-x_2, y_1-y_2, z_1-z_2, 0)$ point point vector $(x_1, y_1, z_1, 1) + (x_2, y_2, z_2, 0) = (x_1+x_2, y_1+y_2, z_1+z_2, 1)$ point vector point $(x_1, y_1, z_1, 0) + (x_2, y_2, z_2, 0) = (x_1+x_2, y_1+y_2, z_1+z_2, 0)$ vector vector vector $c * (x_1, y_1, z_1, 0) = (cx_1, cy_1, cz_1, 0)$ vector vector $c * (x_1, y_1, z_1, 1) = (cx_1, cy_1, cz_1, c)$ point undefined

Points & Vectors in Homogeneous Coordinates

• Multiplying affine transformation matrix to a point and a vector:

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ \mathbf{0} \end{bmatrix}$$
point \longrightarrow point vector vector

• Note that translation is not applied to a vector!

Quiz 1

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Coordinate System & Reference Frame

Coordinate System & Reference Frame

- Coordinate system
 - A system which uses one or more numbers, or coordinates, to uniquely determine the position of points.
- Reference frame
 - Abstract coordinate system + physical reference points (to uniquely fix the coordinate system).

Cartesian (X,Y,Z components) coordinate system 0 (C.S. 0)

Oylindrical (R,q,Z components) coordinate system 1 (C.S. 1)

Coordinate System & Reference Frame

- Two terms are slightly different:
 - Coordinate system is a mathematical concept, about a choice of "language" used to describe observations.
 - Reference frame is a physical concept related to state of motion.
 - You can think the coordinate system determines the way one describes/observes the motion in each reference frame.
- But these two terms are often mixed.

World / Body Frame (or Coordinate System)

- World frame (or coordinate system)
 - A frame (or coordinate system) attached to the **world.**
 - a.k.a. global frame, fixed frame
- Body frame (or coordinate system)
 - A frame (or coordinate system) attached to a moving object.
 - a.k.a. **local** frame

https://commons.wikimedia.org/w iki/File:Euler2a.gif

Hanyang University CSE4020, Yoonsang Lee

Affine Transformation Matrix

Meanings of Affine Transformation Matrix

• The meaning of the same affine transformation matrix can be described from several different perspectives.

1) Affine Transformation Matrix transforms a Geometry w.r.t. World Frame

Review: Affine Frame

- An **affine frame** (for a 3D space) is defined by three vectors and one point
 - Three vectors for x, y, z axes
 - One point for origin

World Frame

- The world frame is usually represented by
 - Standard basis vectors for axes : $\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_y, \hat{\mathbf{e}}_z$
 - Origin point : **0**

$$\hat{\mathbf{e}}_{y} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T} = \mathbf{0} \qquad \hat{\mathbf{e}}_{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$$

$$\hat{\mathbf{e}}_{z} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

Let's transform a "world frame"

- Apply M to this "world frame", that is,
 - Multiply M with the x, y, z axis vectors and the origin *point* of the world frame:

 u_x

 u_y u_z

2) Affine Transformation Matrix defines an Affine Frame w.r.t. World Frame

Examples

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in World Frame

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in World Frame Because...

Directions of the "arrow"

Directions of the "arrow"

Quiz 2

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

All these concepts works even if the starting frame is not world frame!

$\{0\}$ to $\{1\}$ $\hat{\mathbf{e}}_y$ $\hat{\mathbf{e}}_x$ M_1 1, 0) $\hat{\mathbf{e}}_z$ *{0}* (world frame) *{1}*

- 1) **M**₁ transforms w.r.t. *{0}* a geometry represented in *{0}*
- 2) **M**₁ defines an *{*1*}* w.r.t. *{*0*}*
- 3) M₁ transforms a point represented in *{*1*}* to the same point but represented in *{*0*}*
 - $p_a^{\{0\}} = M_1 p_a^{\{1\}}$

- 1) M₂ transforms w.r.t. *[1]* a geometry represented in *[1]*
- 2) M₂ defines an {2} w.r.t. {1}
- 3) M₂ transforms a point represented in {2} to the same point but represented in {1}
 - $p_b^{\{1\}} = M_2 p_b^{\{2\}}$

- 1) M_1M_2 transforms w.r.t. {0} a geometry represented in {0}
- 2) **M**₁**M**₂ defines an *{*2*}* w.r.t. *{*0*}*
- 3) M₁M₂ transforms a point represented in {2} to the same point but represented in {0}
 - $p_b^{\{1\}} = M_2 p_b^{\{2\}}, p_b^{\{0\}} = M_1 p_b^{\{1\}} = M_1 M_2 p_b^{\{2\}}$

Interpretation of Composite Transformations

Revisit: Order Matters!

• If T and R are matrices representing affine transformations,

• $\mathbf{p'} = TR\mathbf{p}$

- First apply transformation R to point p, then apply transformation T to transformed point Rp
- **p'** = **R**T**p**
 - First apply transformation T to point p, then apply transformation R to transformed point Tp
- w.r.t. world frame!

Translate then Rotate

Interpretation of Composite Transformations #1

• An example transformation:

 $M = T(x,3) \cdot R(-90^{\circ})$

- This is how we've interpreted so far:
 - R-to-L: Transforms *w.r.t. world frame*

Hanyang University CSE4020, Yoonsang Lee

Interpretation of Composite Transformations #2

• An example transformation:

 $M = T(x,3) \cdot R(-90^{\circ})$

• Another way of interpretation:

– L-to-R: Transforms *w.r.t. body frame*

(M defines the body frame w.r.t. world frame)

Left & Right Multiplication

- $\mathbf{p'} = \mathbf{M}_1 \mathbf{M}_2 \mathbf{p}$ (left-multiplication by \mathbf{M}_1)
 - (R-to-L)
 - 1) Apply M_2 w.r.t. world frame to a point **p** represented in world frame.
 - 2) Apply M_1 w.r.t. world frame to a point M_2p represented in world frame.
- $\mathbf{p'} = \mathbf{M}_1 \mathbf{M}_2 \mathbf{p}$ (right-multiplication by \mathbf{M}_2)
 - (L-to-R)
 - 1) Apply M₁ w.r.t. initial body frame I (world frame) to a point p represented in body frame I (world frame). Body frame is updated to M₁.
 - 2) Apply M_2 w.r.t. body frame M_1 to a point **p** represented in body frame M_1 . Body frame is updated to M_1M_2 .
 - Another useful interpretation:
 - 1') Apply M_1 w.r.t. body frame I (world frame) to update body frame to M_1
 - 2') Apply M_2 w.r.t. body frame M_1 to update body frame to M_1M_2
 - 3') Locate **p** in body frame M_1M_2

[Demo] L-to-R & R-to-L Interpretation

Transformation demo

An interactive demo for experimenting with 2D transformation matrix composition.

```
+ Translate + Scale + Rotate + Shear ResetT = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```


https://observablehq.com/@esperanc/transformation-demo

- Add translation and linear transforms in various orders with '+' buttons.
- Drag the slider to see the matrix value change and the shape transform.
- Interpret the meaning of composite transformations in L-to-R and R-to-L order.

Lab Session

• Now, let's start the lab today.