Computer Graphics

4 - Affine Space / Frame / Matrix

Yoonsang Lee
Hanyang University

Spring 2023

Outline

- Affine Space - Point vs. Vector
- Coordinate System \& Reference Frame
- Affine Transformation Matrix
- Interpretation of Composite Transformations

Clarification for Reflection

- Some people categorize reflection as a rigid transformation or a similarity transformation.
- However, this lecture does not categorize reflection as a rigid or similarity transformation.

Affine Space - Point vs. Vector

Affine Space - Point vs. Vector

- Conceptually, points and vectors are quite different.
- Homogeneous coordinates can be used to express this difference.
- We will see affine space and the difference between points and vectors, and their relationship with the homogeneous coordinates.
- This concept has been called coordinate invariant or coordinatefree geometric programming.
- Many of the following slides for this part are from the slides of Prof. Jehee Lee (SNU): http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html

Points

- What is the "sum" of these two "points" ?

If you assume coordinates, ...

$\mathrm{p}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

- The sum is $\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}\right)$
- Is it correct?
- Is it geometrically meaningful ?

If you assume coordinates, ...

$$
\mathbf{p}=\left(x_{1}, y_{1}\right)
$$

- Vector sum
- $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are considered as vectors from the origin to \mathbf{p} and \mathbf{q}, respectively.

If you select a different origin, ...

$$
\mathbf{p}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)
$$

- If you choose a different coordinate frame, you will get a different result

Points and Vectors

- A point is a position specified with coordinate values.
- A vector is specified as the difference between two points.
- If an origin is specified, then a point can be represented by a vector from the origin.
- But, a point is still not a vector in coordinate-free concepts.

Points \& Vectors are Different!

- Mathematically (and physically),
- A point is a location in space.
- A vector is a displacement in space.
- An analogy with time:
- A datetime is a location in time.
- A duration is a displacement in time.

Vector and Affine Spaces

- Vector space
- Includes vectors and related operations
- No points
- Affine space
- Superset of vector space
- Includes vectors, points, and related operations

Vector spaces

- A vector space consists of
- Set of vectors, together with
- Two operations: addition of vectors and multiplication of vectors by scalar numbers
- A linear combination of vectors is also a vector

$$
\mathbf{u}_{0}, \mathbf{u}_{1}, \cdots, \mathbf{u}_{N} \in V \Rightarrow c_{0} \mathbf{u}_{0}+c_{1} \mathbf{u}_{1}+\cdots+c_{N} \mathbf{u}_{N} \in V
$$

Affine Spaces

- An affine space consists of
- Set of points, an associated vector space, and
- Two operations: the difference between two points and the addition of a vector to a point

Coordinate-Free Geometric Operations

- Addition
- Subtraction
- Scalar multiplication

Addition

$\mathbf{u}+\mathbf{v}$ is a vector
$\mathbf{p}+\mathbf{w}$ is a point
$\mathbf{u}, \mathbf{v}, \mathbf{w}:$ vectors
$\mathbf{p}, \mathbf{q}:$ points

Subtraction

$\mathbf{u}-\mathbf{v}$ is a vector

q
$\mathbf{p}-\mathbf{q}$ is a vector
$\mathbf{p}-\mathbf{w}$ is a point

$$
\begin{aligned}
& \mathbf{u}, \mathbf{v}, \mathbf{w}: \text { vectors } \\
& \mathbf{p}, \mathbf{q}: \text { points }
\end{aligned}
$$

Scalar Multiplication

scalar \cdot vector $=$ vector
$1 \cdot$ point = point
$0 \cdot$ point $=$ vector
$c \cdot$ point $=($ undefined $) \quad$ if $(c \neq 0,1)$

Affine Frame

- A frame is defined as a set of vectors $\left\{\mathbf{v}_{i} \mid i=1, \ldots, N\right\}$ and a point \mathbf{o}
- Set of vectors $\left\{\mathbf{v}_{\mathbf{i}}\right\}$ are bases of the associate vector space
- \mathbf{o} is an origin of the frame
- N is the dimension of the affine space
- Any point \mathbf{p} can be written as

$$
\mathbf{p}=\mathbf{o}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

- Any vector \mathbf{v} can be written as
in 3D space

: Three vectors and a point

$$
\mathbf{V}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

Summary

- In an affine space,

$$
\begin{array}{ll}
\text { point }+ \text { point }=\text { undefined } & \\
\text { point }- \text { point }=\text { vector } & \\
\text { point } \pm \text { vector }=\text { point } & \\
\begin{array}{rlrl}
\text { vector } \pm \text { vector }=\text { vector } & \\
\text { scalar } \cdot \text { vector }=\text { vector } & & \\
\begin{aligned}
\text { scalar } \cdot \text { point } & =\text { point } & & \text { iff scalar }=1 \\
& =\text { vector } & & \text { iff scalar }=0 \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
\end{array} \begin{aligned}
\end{aligned}
\end{array}
$$

Points \& Vectors in Homogeneous Coordinates

- In homogeneous coordinates,
- A 3D point is represented: $(x, y, z, 1)$
- A 3D vector is represented: $(x, y, z, 0)$
- \rightarrow This representation gives a completely consistent model with the concept of points and vectors in coordinate-free geometric programming!

Points \& Vectors in Homogeneous Coordinates

$$
\left.\begin{array}{c}
\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, 1\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, 1\right) \\
\text { point }) \\
\text { point } \\
\left.\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{1}, 1\right)-\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}, \mathrm{Z}_{1}+\mathrm{Z}_{2}, 2\right) \\
\text { undefined }
\end{array}\right)
$$

Points \& Vectors in Homogeneous Coordinates

- Multiplying affine transformation matrix to a point and a vector:
- Note that translation is not applied to a vector!

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Coordinate System \& Reference Frame

Coordinate System \& Reference Frame

- Coordinate system
- A system which uses one or more numbers, or coordinates, to uniquely determine the position of points.

Cartesian (X, Y, Z components) coordinate system 0 (C.S. O)

Oylindrical ($\mathrm{R}, \mathrm{q}, \mathrm{Z}$ components) coordinate system 1 (C.S. 1)

- Reference frame
- Abstract coordinate system + physical reference points (to uniquely fix the coordinate system).

Coordinate System \& Reference Frame

- Two terms are slightly different:
- Coordinate system is a mathematical concept, about a choice of "language" used to describe observations.
- Reference frame is a physical concept related to state of motion.
- You can think the coordinate system determines the way one describes/observes the motion in each reference frame.
- But these two terms are often mixed.

World / Body Frame (or Coordinate System)

- World frame (or coordinate system)
- A frame (or coordinate system) attached to the world.
- a.k.a. global frame, fixed frame
- Body frame (or coordinate system)
- A frame (or coordinate system) attached to a moving object.
- a.k.a. local frame

https://commons.wikimedia.org/w iki/File:Euler2a.gif

Affine Transformation Matrix

Meanings of Affine Transformation Matrix

- The meaning of the same affine transformation matrix can be described from several different perspectives.

1) Affine Transformation Matrix transforms a Geometry w.r.t. World Frame

Review: Affine Frame

- An affine frame (for a 3D space) is defined by three vectors and one point
- Three vectors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
- One point for origin

: Three vectors
and a point

World Frame

- The world frame is usually represented by
- Standard basis vectors for axes : $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{z}$
- Origin point : 0

$$
\begin{gathered}
\hat{\mathbf{e}}_{y}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}=\mathbf{0}} \\
\hat{\mathbf{e}}_{x}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T} \\
\hat{\mathbf{e}}_{z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
\end{gathered}
$$

Let's transform a "world frame"

- Apply M to this "world frame", that is,
- Multiply M with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis vectors and the origin point of the world frame:
x axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ m_{31} \\ 0\end{array}\right]$
z axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{13} \\
m_{23} \\
m_{33} \\
0
\end{array}\right]
$$

y axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{12} \\
m_{22} \\
m_{32} \\
0
\end{array}\right]
$$

origin point

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
1
\end{array}\right]
$$

2) Affine Transformation Matrix defines an Affine Frame w.r.t. World Frame

Examples

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in World Frame

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in World Frame Because...

Directions of the "arrow"

Directions of the "arrow"

Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

All these concepts works even if the starting frame is not world frame!

\{1\}

- 1) M_{1} transforms w.r.t. $\{0\}$ a geometry represented in $\{0\}$
- 2) $\mathbf{M}_{\mathbf{1}}$ defines an $\{\mathbf{1}\}$ w.r.t. $\{0\}$
- 3) \mathbf{M}_{1} transforms a point represented in $\{\mathbf{1}\}$ to the same point but represented in $\{0\}$
$-\mathbf{p a}^{\{0\}}=\mathbf{M}_{1} \mathbf{p a}^{\{1\}}$

$\{1\}$ to $\{2\}$

- 1) $\mathbf{M}_{\mathbf{2}}$ transforms w.r.t. $\{\mathbf{1 \}}$ a geometry represented in $\{\mathbf{1}\}$
- 2) \mathbf{M}_{2} defines an $\{2\}$ w.r.t. $\{1\}$
- 3) \mathbf{M}_{2} transforms a point represented in $\{2\}$ to the same point but represented in \{1\}
$-\mathbf{p}{ }^{\{1\}}=\mathbf{M}_{2} \mathbf{p}_{b}{ }^{\{2\}}$

$\{0\}$ to $\{2\}$

- 1) $\mathbf{M}_{1} \mathbf{M}_{\mathbf{2}}$ transforms w.r.t. $\{0\}$ a geometry represented in $\{0\}$
- 2) $\mathbf{M}_{1} \mathbf{M}_{2}$ defines an $\{2\}$ w.r.t. $\{0\}$
- 3) $\mathbf{M}_{1} \mathbf{M}_{2}$ transforms a point represented in $\{2\}$ to the same point but represented in $\{0\}$
$-\mathbf{p}_{b}{ }^{\{1\}}=\mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}, \mathbf{p}_{\mathrm{b}}{ }^{\{0\}}=\mathrm{M}_{1} \mathbf{p}_{\mathrm{b}}{ }^{\{1\}}=\mathrm{M}_{1} \mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}$

Interpretation of Composite Transformations

Revisit: Order Matters!

- If T and R are matrices representing affine transformations,
- $\mathbf{p}^{\prime}=\mathrm{TR} \mathbf{p}$
- First apply transformation R to point \mathbf{p}, then apply transformation T to transformed point Rp

Rotate then Translate

- $\mathbf{p}^{\prime}=\mathrm{RTp}$
- First apply transformation T to point \mathbf{p}, then apply transformation R to transformed point Tp
- w.r.t. world frame!

Translate then Rotate

Interpretation of Composite Transformations \#1

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- This is how we've interpreted so far:
- R-to-L: Transforms w.r.t. world frame

Interpretation of Composite Transformations \#2

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- Another way of interpretation:
- L-to-R: Transforms w.r.t. body frame

(M defines the body frame w.r.t. world frame)

Left \& Right Multiplication

- $\mathbf{p}^{\prime}=\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{p}$ (left-multiplication by \mathbf{M}_{1})
- (R-to-L)
- 1) Apply \mathbf{M}_{2} w.r.t. world frame to a point \mathbf{p} represented in world frame.
- 2) Apply \mathbf{M}_{1} w.r.t. world frame to a point $\mathbf{M}_{2} \mathbf{p}$ represented in world frame.
- $\mathbf{p}^{\prime}=\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{p}$ (right-multiplication by \mathbf{M}_{2})
- (L-to-R)
- 1) Apply \mathbf{M}_{1} w.r.t. initial body frame \mathbf{I} (world frame) to a point \mathbf{p} represented in body frame \mathbf{I} (world frame). Body frame is updated to \mathbf{M}_{1}.
- 2) Apply \mathbf{M}_{2} w.r.t. body frame \mathbf{M}_{1} to a point \mathbf{p} represented in body frame \mathbf{M}_{1}. Body frame is updated to $\mathbf{M}_{1} \mathbf{M}_{\mathbf{2}}$.
- Another useful interpretation:
- 1') Apply $\mathbf{M}_{\mathbf{1}}$ w.r.t. body frame \mathbf{I} (world frame) to update body frame to $\mathbf{M}_{\mathbf{1}}$
- 2') Apply \mathbf{M}_{2} w.r.t. body frame \mathbf{M}_{1} to update body frame to $\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$
- 3') Locate \mathbf{p} in body frame $\mathbf{M}_{1} \mathbf{M}_{2}$

[Demo] L-to-R \& R-to-L Interpretation

Transformation demo

An interactive demo for experimenting with 2D transformation matrix composition.

+ Translate + Scale + Rotate + Shear Reset
$T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

https://observablehq.com/@esperanc/transformation-demo
- Add translation and linear transforms in various orders with ' + ' buttons.
- Drag the slider to see the matrix value change and the shape transform.
- Interpret the meaning of composite transformations in L-to-R and R-toL order.

Lab Session

- Now, let's start the lab today.

